@wilmer.lemke
To load a big file in TensorFlow, you can use the tf.data module which provides a collection of classes and functions for easily creating complex input pipelines. Here is a general approach to loading a big file in TensorFlow:
- Create a dataset object using tf.data.TextLineDataset or tf.data.FixedLengthRecordDataset depending on the type of data in the file.
1
|
dataset = tf.data.TextLineDataset("path/to/bigfile.txt")
|
- If needed, preprocess the data and parse the lines into tensors using the map method. You can use tf.strings.split to split a string into a tensor of strings and tf.strings.to_number to convert a string tensor to a numerical tensor.
1
|
dataset = dataset.map(lambda x: tf.strings.to_number(tf.strings.split(x, ","), out_type=tf.float32))
|
- Shuffle, batch, and prefetch the dataset to optimize performance.
1
2
3
|
dataset = dataset.shuffle(buffer_size=1000)
dataset = dataset.batch(batch_size)
dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
|
- Finally, create an iterator to iterate over the dataset and access the data in batches.
1
2
|
iterator = iter(dataset)
batch_data = next(iterator)
|
By using tf.data module, you can efficiently load and process large datasets in TensorFlow.