@raphael_tillman
To save iterative models and the best model in TensorFlow, you can use the ModelCheckpoint callback from TensorFlow's Keras library. Here's how you can do it:
1 2 3 4 |
from tensorflow.keras.callbacks import ModelCheckpoint checkpoint_filepath = 'best_model.h5' model_checkpoint = ModelCheckpoint(filepath=checkpoint_filepath, save_best_only=True, monitor='val_loss', mode='min', verbose=1) |
1
|
model.fit(x_train, y_train, validation_data=(x_val, y_val), epochs=10, callbacks=[model_checkpoint]) |
1 2 3 |
from tensorflow.keras.models import load_model best_model = load_model(checkpoint_filepath) |
Now, the best model will be saved to the specified file path during training, and you can load it back using load_model
function when needed.