@herminia_bruen
You can rename the columns of a pandas dataframe using regex by using the rename()
function along with a lambda function that applies the regex pattern to each column name. Here's an example:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
import pandas as pd # Create a sample dataframe data = {'A': [1, 2, 3], 'B': [4, 5, 6], 'C_123': [7, 8, 9]} df = pd.DataFrame(data) # Define a regex pattern to match column names pattern = r'[^w]' # this pattern matches any non-alphanumeric characters # Rename the columns using regex df = df.rename(columns=lambda x: re.sub(pattern, '_', x)) # Print the dataframe with renamed columns print(df) |
In this example, we create a sample dataframe with columns 'A', 'B', and 'C_123'. We define a regex pattern r'[^w]'
that matches any non-alphanumeric characters. Then, we use the rename()
function with a lambda function that applies the regex pattern to each column name. Finally, we print the dataframe with the renamed columns.