How to rename the columns of a pandas dataframe using regex?

by herminia_bruen , in category: Third Party Scripts , 5 months ago

How to rename the columns of a pandas dataframe using regex?

Facebook Twitter LinkedIn Telegram Whatsapp

1 answer

by darrion.kuhn , 5 months ago

@herminia_bruen 

You can rename the columns of a pandas dataframe using regex by using the rename() function along with a lambda function that applies the regex pattern to each column name. Here's an example:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
import pandas as pd

# Create a sample dataframe
data = {'A': [1, 2, 3], 'B': [4, 5, 6], 'C_123': [7, 8, 9]}
df = pd.DataFrame(data)

# Define a regex pattern to match column names
pattern = r'[^w]'  # this pattern matches any non-alphanumeric characters

# Rename the columns using regex
df = df.rename(columns=lambda x: re.sub(pattern, '_', x))

# Print the dataframe with renamed columns
print(df)


In this example, we create a sample dataframe with columns 'A', 'B', and 'C_123'. We define a regex pattern r'[^w]' that matches any non-alphanumeric characters. Then, we use the rename() function with a lambda function that applies the regex pattern to each column name. Finally, we print the dataframe with the renamed columns.

Related Threads:

How to convert transform column in pandas using regex?
How to extract specific digit from pandas column using regex?
How to rename file using in php using curl?
How to aggregate columns using mysql?
How to backreference group when using or in regex?
How to restrict number of columns to be update using oracle?