@edmond_brakus
To implement multiprocessing in FastAPI, you can use the built-in Python multiprocessing
module. Here is an example of how you can create a FastAPI endpoint that runs a function in a separate process:
- Import the necessary modules:
1
2
|
from fastapi import FastAPI
import multiprocessing
|
- Create a FastAPI app instance:
- Define a function that you want to run in a separate process:
1
2
3
|
def my_function(data):
# Your function logic here
return data
|
- Create a FastAPI endpoint that will run the function in a separate process:
1
2
3
4
5
6
7
8
9
10
11
12
|
@app.post("/process-data")
async def process_data(data: str):
# Create a multiprocessing Pool
pool = multiprocessing.Pool()
# Map the function to the data in a separate process
result = pool.apply_async(my_function, args=(data,))
# Get the result from the separate process
processed_data = result.get()
return {"processed_data": processed_data}
|
- Run the FastAPI app:
1
2
|
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|
Now, when you send a POST request to the /process-data
endpoint with some data, the function my_function
will be executed in a separate process, and the processed data will be returned as a response. This allows you to take advantage of multiprocessing in FastAPI to improve performance for CPU-bound tasks.