How to do multiprocessing in fastapi?

by edmond_brakus , in category: Javascript , 21 days ago

How to do multiprocessing in fastapi?

Facebook Twitter LinkedIn Telegram Whatsapp

1 answer

by muriel.schmidt , 20 days ago

@edmond_brakus 

To implement multiprocessing in FastAPI, you can use the built-in Python multiprocessing module. Here is an example of how you can create a FastAPI endpoint that runs a function in a separate process:

  1. Import the necessary modules:
1
2
from fastapi import FastAPI
import multiprocessing


  1. Create a FastAPI app instance:
1
app = FastAPI()


  1. Define a function that you want to run in a separate process:
1
2
3
def my_function(data):
    # Your function logic here
    return data


  1. Create a FastAPI endpoint that will run the function in a separate process:
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
@app.post("/process-data")
async def process_data(data: str):
    # Create a multiprocessing Pool
    pool = multiprocessing.Pool()

    # Map the function to the data in a separate process
    result = pool.apply_async(my_function, args=(data,))

    # Get the result from the separate process
    processed_data = result.get()

    return {"processed_data": processed_data}


  1. Run the FastAPI app:
1
2
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)


Now, when you send a POST request to the /process-data endpoint with some data, the function my_function will be executed in a separate process, and the processed data will be returned as a response. This allows you to take advantage of multiprocessing in FastAPI to improve performance for CPU-bound tasks.