@shyann
To decode a TensorFlow summary string, you can use the tf.io.parse_single_example
function from the TensorFlow library. Here is an example code snippet that demonstrates how to decode a TensorFlow summary string:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
import tensorflow as tf # Define the feature description dictionary feature_description = { 'feature1': tf.io.FixedLenFeature([], tf.float32), 'feature2': tf.io.FixedLenFeature([], tf.int64), 'feature3': tf.io.FixedLenFeature([], tf.string), } # Define the summary string summary_string = b"serialized_summary_string_here" # Parse the summary string parsed_summary = tf.io.parse_single_example(summary_string, feature_description) # Access the decoded features feature1 = parsed_summary['feature1'].numpy() feature2 = parsed_summary['feature2'].numpy() feature3 = parsed_summary['feature3'].numpy() print(feature1, feature2, feature3) |
In this code snippet, you need to define the feature description dictionary that maps the feature names to their corresponding data types. Then, you can use the tf.io.parse_single_example
function to parse the summary string using the feature description dictionary. Finally, you can access the decoded features by accessing the values in the parsed_summary
dictionary.
Please note that you need to replace 'serialized_summary_string_here'
with the actual serialized summary string that you want to decode.