@daisha
To create a complex schema in FastAPI, you can define a Pydantic model class with nested fields and relationships. Pydantic is the library used by FastAPI for creating data validation and serialization schemas. Here's how you can create a complex schema in FastAPI using Pydantic:
1 2 3 4 5 6 7 8 9 10 11 12 13 |
from pydantic import BaseModel from typing import List class Address(BaseModel): street: str city: str state: str zip_code: str class User(BaseModel): name: str age: int addresses: List[Address] |
1 2 3 4 5 |
class Order(BaseModel): order_id: int user: User items: List[str] total_price: float |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
from fastapi import FastAPI from fastapi import Body app = FastAPI() @app.post("/order/") async def create_order(order: Order): # Process the order request return {"message": "Order created successfully", "order": order} @app.get("/order/{order_id}") async def get_order(order_id: int): # Retrieve the order with id return {"order_id": order_id, "items": ["item1", "item2"], "total_price": 100.0} |
By using Pydantic for creating complex schemas and validation in FastAPI, you can easily define and maintain structured and reliable data models for your web applications.