@daisha
To create a complex schema in FastAPI, you can define a Pydantic model class with nested fields and relationships. Pydantic is the library used by FastAPI for creating data validation and serialization schemas. Here's how you can create a complex schema in FastAPI using Pydantic:
1 2 3 4 5 6 7 8 9 10 11 12 13 |
from pydantic import BaseModel
from typing import List
class Address(BaseModel):
street: str
city: str
state: str
zip_code: str
class User(BaseModel):
name: str
age: int
addresses: List[Address]
|
1 2 3 4 5 |
class Order(BaseModel):
order_id: int
user: User
items: List[str]
total_price: float
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
from fastapi import FastAPI
from fastapi import Body
app = FastAPI()
@app.post("/order/")
async def create_order(order: Order):
# Process the order request
return {"message": "Order created successfully", "order": order}
@app.get("/order/{order_id}")
async def get_order(order_id: int):
# Retrieve the order with id
return {"order_id": order_id, "items": ["item1", "item2"], "total_price": 100.0}
|
By using Pydantic for creating complex schemas and validation in FastAPI, you can easily define and maintain structured and reliable data models for your web applications.