@larissa
To compute Fibonacci extensions in Erlang, you can create a recursive function that calculates the Fibonacci sequence up to a certain number of terms and then calculates the Fibonacci extensions based on the last two numbers in the sequence.
Here is an example implementation in Erlang:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
-module(fibonacci). -export([fibonacci/1]). fibonacci(0) -> []; fibonacci(N) -> fibonacci(N, [0, 1]). fibonacci(1, Seq) -> Seq; fibonacci(N, Seq) -> [A, B | Rest] = Seq, Next = A + B, NewSeq = Seq ++ [Next], fibonacci(N - 1, NewSeq). compute_extensions(Seq) -> {_, B | _} = lists:last(Seq), {_, A | _} = lists:nth(-2, Seq), Extensions = [B, A + B, (A + B) * 1.618], Extensions. % Example usage Seq = fibonacci(10), Extensions = compute_extensions(Seq), io:format("Fibonacci Sequence: ~p~n", [Seq]), io:format("Fibonacci Extensions: ~p~n", [Extensions]). |
You can compile this code using the Erlang compiler and run it in an Erlang shell to compute the Fibonacci sequence and extensions. The fibonacci/1
function generates the Fibonacci sequence up to a specified number of terms and the compute_extensions/1
function calculates the Fibonacci extensions based on the last two numbers in the sequence.
You can adjust the input parameter to the fibonacci/1
function to generate a longer or shorter Fibonacci sequence and compute the corresponding extensions.